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In this paper  we consider  waves of small ,  but finite, amplitude, generated on the sur face  layer of a v i s -  
cous incompress ib le  fluid running on a ver t ica l  solid surface.  The t rea tment  is for smal l  Reynolds numbers 
Re = U0h0/v , and is based on the full sys tem of Navier-Stokes equations with boundary conditions on the wall and 
on the f ree  sur face  of the fluid (the act ion of sur face  tension is taken into account). 

A s imi lar  problem,  but with no sur face  tensiont and for not too large inclination angles of the wall, was 
considered in [1, 2]. 

An equation of the fo rm 
ht -~3hx -~- 6hhx -~ cchxx -~ 7hx~:~r = 0 (1) 

is used in [3, 4], taking into account  effects of nonlinearity,  "negative viscosi ty"  (the t e rm ahxx), and diss ipa-  
tion (the t e rm Thxxxx ) for waves on the sur face  of the fluid film. 

A s imi lar  equation was obtained in [5] for concentrat ion waves in chemical ly  reac t ing  diffusion media.  
Also given is an analytic solution of this equation in the s ta t ionary  case,  as well as qualitative discuss ion of 
the mechanisms of pumping, dissipation, and energy t rans fe r  as obtained f rom the spect ra  described by this 
equation. Numerical  analysis  of the per turbat ion evolution was ca r r i ed  out in [6] for Eq. (1) with periodic 
boundary eonditionsj and it has been shown that during the evolution process  the regular  initial per turbat ion 
reaches  a turbulent state (chemical turbulence).  

As a l ready mentioned, Eq. (1) descr ibes  nonlinearity,  energy- t ransfer ,  and dissipation for waves in 
act ive media, but, unfortunately,  does not include d ispers ion  effects.  In the given paper we use an equation of 
the fo rm 

ht -~- 3IK + 6hhx ~ ahx.x -~ ~hxx:c "~ 7hxxxx = 0 

for waves on the sur face  of a fluid film for smal l  Reynolds numbers .  It obviously is the s imples t  form of a 
wave equation including all effects enumerated above, especial ly  dispers ion (fl ~ 0). It is also attempted to 
study severa l  proper t ies  of its solution. A fuller study of the behavior of the solution must,  obviously, be c a r -  
r ied out by numerica l  analysis .  

The full sy s t em of equations with boundary conditions, descr ibing the flow of a fluid film over a ver t ica l  
wall is, in dimensionless  var iables ,  is 

ut + uu~ + vu~ + p~ = u .~  + R + v---~e , (2) 

.' ~e (v t _~ uv x .~. vvy) -~ py : g~ ( Vxx -~ R e ,  

t~.~ - -  v u = O. 

The boundary conditions a re :  
u = v = Ol~,=o, 

v = h t -}- uhxly=~, (3) 

p = 2 [ %  + 5~h~u~ - -  h~ (u~ + 8~"v~)]/Re (t + 8~'h~) -- 52Wh~x ,~=~, 

(t - 8 hl) - - = 0 ,* 

where u, v a re  the ver t ica l  and horizontal  components of the dimensionless  velocity,  p is p r e s s u r e ,  x and y a re  
the coordinates  along and ac ross  the film, and nondimensionalizing is performed as follows : x = x'/L, y = y'/h0, 

t - -  v 2 u = u'/U0, v = Lv'/h0U0, p = (P Pa)/pU0, h = h'/h0, where L is a cha rac te r i s t i c  longitudinal dimension, h 0 is the 
unperturbed width of the film, U 0 = gh2/~ is a cha rac te r i s t i c  flow velocity,  ~ is viscosi ty ,  and the following 
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p a r a m e t e r s  w e r e  in t roduced :  5 = h j L ,  c h a r a c t e r i z i n g  the w a v e l e n g t h ,  Re  = UoL/v  is the Reynolds  number ,  
W = a/ph0U I is the Weber  num be r ,  c h a r a c t e r i z i n g  the s u r f a c e  tens ion ,  a is the s u r f a c e  tens ion,  and g is the 
g rav i t a t iona l  a c c e l e r a t i o n .  

We r e p r e s e n t  the so lu t ion  of this s y s t e m  in the f o r m  of a s e r i e s  in a s m a l l  p a r a m e t e r  s the devia t ion  
of the s u r f a c e  f r o m  the unper tu rbed  pos i t ion :  

h = t + eq, 
u = U -F ~Ul + s~u~, (4) 

v = s v l  A-  s2v~,  . 

P = Pt -F spl -t- s~p,. 

Cons ide r  the c a s e  R e ~  1, ~<<1 (wavelength) .  Subs t i tu t ing  e x p r e s s i o n s  (4) into (2), (3) and equat ing t e r m s  
of ident ica l  powers  in s, we obtain in the z e r o t h  o r d e r  

U11u/Re8 ~ + Lg/U~ = pzx, ply-= O, 

Uy = Pz = 0[ 11=1, U = 0111=0, 

w h e n c e  fol low p / =  0 and U = y - y2/2, i .e . ,  the o r d i n a r y  Po i seu i l l e  p ro f i l e .  

T r a n s f o r m i n g  to the fo l lowing two app rox ima t ions ,  we choose  the r e l a t i o n  between the wavelength,  and the 
ampl i tude  in the f o r m  52 = ks,  w h e r e  k is a number  of o r d e r  1. 

This a s s u m p t i o n  impl ies  that  the v e l o c i t y  of the wave  d i s p e r s i o n  is of the s a m e  o rde r  as  the ve loc i t y  of 
its nonl inear  t o r s ion .  Under  these  condi t ions  the s y s t e m  of equat ions  acqu i r e s  the f o r m  

s(ult + Uu,x -t- U11v1 + Plx ) =  [sul~x + (u11111 (5) 

-4- eu2y11)/k l/Re, 

ep111 + s2p211 = ks[evl== "4- (v11111 + ev~1111)lkl/Re, 

e(ul= + v,11) + s~(u2~ + v~11) = O, 

u, = us = v~ = v , =  0111=o, 
evl -F s~v2 = e~lt -F (U -t- eul)e~l~111=l+~n, 

epl --F e~p2 = 2(evil1 -F s~v~11 - -  g~lxU11 - -  e~qxu111)/Re 

--ke~W~l~l 11=i+~n, 
eU11yq -F cull1 -F a2u~11 -F ke~vlx - -  2ks3~lx(U1= - -  v111) = 0t11=1+~. 

l : l e t a i n i n g e v e r y w h e r e  the d o m i n a n t  t e r m s  in a, we obtain the fol lowing a p p r o x i m a t i o n :  

u11111 = O, P111 = v11111/Re, 

UlX JU I)111 ~- O, 

ux = vl = 0[11=0, v, = qt § U~1~[11=1, 
Pl --- 2vlJRe - -  8~W~1~[11=1, 

U1111~1 -}- u111 = 0l~=~. 

This s y s t e m  of equat ions  has  a so lu t ion  in f o r m  of the s o - c a l l e d  "k inema t i c "  waves  [7]: 

~1 = ~ l (x  - -  t ) ,  p ~  = - - ~ I ~ ( Y  + i)/Re - -  ~ W ~ .  ( 6 )  

As s e e n  f r o m  Eq.  (6), in this a p p r o x i m a t i o n  they a r e  s t a t i o n a r y  and thei r  v e l o c i t y  is c = gh~/v.  
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To ob ta in  an  evo lu t ion  equa t ion  of the  s h a p e  of the  s u r f a c e  ~(x,  t) i t  is n e c e s s a r y  to  c o n s t r u c t  the  fo l l ow-  
ing  a p p r o x i m a t i o n ,  in which  one a s s u m e s  

= ~(~, ~), (7)  

w h e r e  ~ = x -  t ;  T = ~t. 

S u b s t i t u t i n g  (7) in to  (5) and t r a n s f e r r i n g  the  b o u n d a r y  cond i t i ons  to the  p o i n t  y = 1, we ob t a in  

(U - -  i)ul~ + Uyv~ + p~ = ux~/Re + u~ /Rek ,  
u2~ + v.~ = O, u~ : v~ = 0]~=o, 

u~ + kv~ = 01~=~. 

S u b s t i t u t i n g  the known ul ,  v~, Pt and e l i m i n a t i n g  the  unknown u2, v 2 f r o m  the k i n e m a t i c  b o u n d a r y  c o n d i t i o n  
we ob ta in  an  e q u a t i o n  fo r  ~: 

o r  in d i m e n s i o n a l  f o r m  

( gh~ [ Uo~h o \ 0, 

w h e r e  a l l  q u a n t i t i e s  a r e  d i m e n s i o n a l .  

This  equa t ion  is an  evo lu t i on  equa t ion  d e s c r i b i n g  n o n l i n e a r  w a v e s  of s m a l l ,  but  f i n i t e ,  a m p l i t u d e  on the  
s u r f a c e  of a v e r t i c a l  f luid f i l m .  The t e r m  with  h}~ d e s c r i b e s  e n e r g y  t r a n s f e r  in to  the  wave  f r o m  the s t a t i o n a r y  
b a s i c  f low,  the  t e r m  with h~}}~ the  a c t i o n  of s u r f a c e  t ens ion ,  and the  t e r m  with h~}~ " h y d r o d y n a m i c "  d i s p e r -  
s i o n  of w a v e s .  The p r e s e n c e  of th is  t e r m  in  the  equa t ion ,  a s  s e e n  be low,  c a n  i m p o r t a n t l y  a f f e c t  t he  b e h a v i o r  of 
the  s o l u t i o n  (e .g . ,  wave  s e c l u s i o n ) .  

F o r  the  a n a l y s i s  we  r e w r i t e  the  e q u a t i o n  in  the  f o r m  

h i (~h 0 ~ + 2 ~  + ~ ~- R ~  + ~ ~ + ~ ~ = o, (8) 

w h e r e  r ( t 1 ' -  hb) /h t ;  t = Uot ' /L;  R = gha0/v 2. 

C o n s i d e r  a s o l u t i o n  of Eq.  (8) in  the  f o r m  of s t a t i o n a r y  w a v e s .  We s e e k  a s o l u t i o n  in  the  f o r m  r = r  = 
( p ( ~ -  VT); t hen  

h i 
~h~ ~ . . . .  = 0 - v + '  + + + + (9) 

I n t r o d u c i n g  the f i l m  n u m b e r  F i  = oz/p3gv 4, and i n t e g r a t i n g  (9) o v e r  ~ f r o m  - oo tooo with  a c c o u n t t a k e n  of the  f ac t  t ha t  
for  a s o l i t a r y  wave  of the  s o l i t o n  type  ~0 = ~o' = r  = ~o" = ~0 ~ = 0 fo r  { - -**~ ,  wh i l e  fo r  a " s t e p "  (p = 0, ~--*+~, 
~o = V for  [ - - - -~o ,  we  ob ta in  

( ' ~ - v ) t P + W  ~ nCtk -Z-7  (P -~ s R~/~L~ 

E q u a t i o n  (10) m a k e s  i t  p o s s i b l e  to a n a l y z e  s e v e r a l  c h a r a c t e r i s t i c  f e a t u r e s  of  w a v e s ,  o b s e r v e d  in f i l m  
f low.  In F i g .  2 we show s e v e r a l  t y p i c a l  p r o f i l e s  of f i l m  wid th .  I t  is  s e e n  t ha t  for  t h e s e  n a t u r a l  waves  (F ig .  2C) 
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Fig. 4 

one observes a s t rong spread in wavelength. This can be explained qualitatively by Eq. (10) as follows. In 

region of smal l  width the main terms of the equation a r e  (~ -V}~  and ~5 ~-Rcp', so it acquires the form the 

The phase t ra jec tor ies  of this equation have the shape of Fig. 3, where the a r row corresponds  to in- 
c reas ing  ~ = ~ -  Vt. When (p approaches the point ~ = V the derivat ive ~ '  --*0~ and this approximation takes 
place asymptot ica l ly  for ~--*+~, i .e. ,  the solution in this region has the shape of Fig. 4. 

In an experimental  situation, however,  a smal l  r andom perturbat ion can lead to a vanishing ~' and to 
phase points merg ing  again into position A. Since the perturbat ion is random in nature,  the wavelength is also 
random.  The shape of the sur face  in the r e tu rn  region to point A is determined by terms with high derivat ives.  
In the case  of wave excitation a definite wavelength is extracted,  corresponding to the excitation frequency.  

The effect  of the dispers ion t e rm and of the t e rm involving stwface tension on the shape of sol i tary  waves 
and "s teps"  can be analyzed by consider ing the behavior of phase t ra jec tor ies  of Eq. (10) in neighborhoods of 
s ta t ionary  points for ~--*:~oo. 

Consider the case  of soli tons.  Substituting into the equation 

we obtain the cha rac te r i s t i c  equation 
u 8 ~- an ~ ~- :b •  - -  c = 0 ,  (11)  

where a = 3RYfi/FiV~; b = (%~)R~/Fir  c = 3VRY~/Fir 

The behavior of solutions near s ta t ionary  points is determined by whether Eq. (11) has rea l  or complex 
roo ts .  The effect of the dissipation t e rm on thep re sence  of oscillations at the edges for [--* ~-~o is of interest ,  
s ince in the case  a = 0, b>0  the c r i t e r ion  of having three rea l  roots  [8] 

27 (3b - -  a 2 )  3 .... ~ -- 6.75 (12) 
A = (2aa _ 9 a b  - -  27c) ~ 

is not sat isf ied,  and, consequently, we always have one r ea l  and two complex conjugate roots  u l ,  ~2,3 = ~ ~- iw. 

F r o m  the Vieta theorem it follows that 
3VRS/3 

n i x  2 ~- u~u a -]- u l u  s ~ b, 

ul q- z2 -b • = z l  -~ 2a = - - a ,  

i.e.,  for V> 0, a = 0 we obtains41>0 and ~ = - n y / 2  <0, i.e., for ~ + ~ o  the bounded solution e ~4~/5 corresponds  to 
the complex roots ,  and ~- - -oo  to the rea l  one. Thus, a soliton has the shape of Fig. 5a, i.e., in front the solu-  
tion is oscillating, and behind it is smooth. The situation is con t r a ry  for V < 0. Waves of this type were obtained 
numer ica l ly  [9] and observed experimental ly  [10]. 

We show now the possibil i ty of soliton existence without oscillations when the t e rm with a third derivat ive 
is included. For  this it is neces sa ry  that the condition A ( - 6 . 7 5  be satisfied (the p resence  of three rea l  roots) ,  
while the roots  must  have different  signs. 

This is possible,  e.g., for the case  a = 0.3, b = 0.004, c = 0.003 corresponding  to the values u l  = 0.08, 
~2 = - 0 . 1 6 ,  ~<s = -0 .234 ,  R = 0.1, Fi = 10, V = 0.01, or a = 3, b = 1.25, c = 1.5, corresponding to the values ~t  = 
0.5, ~42 = - I . 5 ,  ~4 a = - 2 . 0 ,  R = 3.125, Fi = 10, V = 0.5. 

In this case  the soliton has t h e s h a p e  i l lustrated in Fig. 5b. To explain the general  conditions of absence 
of osci l lat ions we use the fact that ,  as is well known f rom algebra  (see, e.g.,  [11]), all  roots  of Eq. (11) a re  located 
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in the lef t  complex half-plane if and only if all its coeff icients ,  i .e . ,  a,  b, and - c ,  have the same sign, and, 
bes ides 

- - c  - -  ba .< O. 

Thus, for V > 0 the roots  x t ,  x2, 14.3 a r e  e i ther  al l  posi t ive or have dif ferent  signs. The f i r s t  possibi l i ty  
cannot  be r ea l i zed ,  s ince both ex t rema  points of the cubic parabola  (11) a re  always in the left  half-plane for 
a > 0 and b> 0. Consequently,  a s oliton without oscillations can exis t  if condition (12) is sat isf ied and V > 0~ or 
for V<0  

3 ( - -V)R2/~/Fi  1/3 - -  ba ~ O. 

The author is grateful  to V. E. Nakoryakov for guidance, and to V. G. Gasenko and O. Yu. Tsvelodub for 
useful r e m a r k s  and advice.  
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